Smart City Intelligent Sensing: Productivity and Wellbeing

Dian Tjondronegoro Associate Professor, Science & Engineering Faculty Member, Institute for Health and Biomedical Innovation Member, Institute for Future Environment Queensland University of Technology <u>dian@qut.edu.au</u> <u>http://staff.qut.edu.au/staff/tjondron/</u>

@UBAYA University, Surabaya - 19 October 2016

Science and Engineering Faculty

a university for the **real** world `

Motivation

- The interplay of mobile and cloud computing enables innovative processes that bring about activities and services that were previously thought impractical or impossible for lightweight devices.
- A powerful example is how Apple's SIRI
 - supports speech interactions and provide wisdom to answer everyday questions based on the Web knowledge and crowd-sourced information, such as "would the weather be suitable for my planned activities tomorrow?" and "which nearby favorite restaurants serve my friends' favorite meals and not so busy at this time?"
- **Microsoft HoloLens** will bring this type of natural interface to the next level, via wearable device that can augment the information directly to the objects that people see, which also means that people can look at information without losing awareness of its surrounding.

Science and Engineering Faculty

The Internet of Things (IoT)

- The Internet of Things (IoT) is a system of <u>interrelated</u> computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.
- IoT has evolved from the <u>convergence</u> of <u>wireless</u> technologies, micro-electromechanical systems (<u>MEMS</u>), micro service and the Internet.
- The convergence has helped <u>tear down the silo walls</u> between operational technology (OT) and information technology (IT), allowing unstructured <u>machine-generated</u> <u>data</u> to be analyzed for insights.

City-wide IoT Community Network

- Vision: to build an infrastructure for a public (<u>open</u>) access innovation platform where users can connect their "things" to the internet for <u>free</u>.
 - Empower people (residents, students, researchers, community groups & businesses) to monitor and track the "things" that are most important to them and sharing data easily using open standards technology.
- The Integrated sensors (and sensors network) in Brisbane city and surroundings will:
 - enable new transdisciplinary research initiatives,
 - trigger new industry and community collaborations,
 - enrich our teaching capabilities.
- The Institute for Future Environment (IFE) has multi-site research facilities including:
 - Connecting sensor data from these facilities will provide new opportunities for analysing and visualising a city-wide environment health, boosting IFE's unique capacity to lead cuttingedge IoT enabled research initiatives.

LoRa WAN

- Designed to support low power (battery operated/solar power), long range (distances greater than 15km can be achieved with good conditions. 5km may be more realistic in large cities and less than 2km in dense urban areas.
 - The network uses the Industrial Scientific & Medical (ISM) wireless spectrum radio frequency 915 MHz band and LoRaWAN data rates range from 0.3 kbps to 50 kbps.
- A global open standard that is fast becoming the most prevalent IoT LPWAN solution given its bi- directional communication, security, reliability, flexibility and coverage attributes.
 - Effective remote monitoring and asset management solution for smart grids, smart metering, water AMR and smart farming.
- The technology is endorsed by the global LoRa-Alliance (lora-alliance.org) which has the support of the world's largest IoT device OEMs and systems integrators
 - robust, secure and scalable features and "no lock in contracts" business model.

City-wide Coverage

Science and Engineering Faculty

a university for the **real** world

Initial Case Studies

- Low-bridges strike prevention (sensor to warn drivers in real-time, in conjunction a mobile the app – mainly used for the accident prone bridges)
- Real time flood level, wildlife movement strategy/ management
- School zone detection, temporary traffic management signs (on/off the e.g. signs for speed)
- Real time traveler information: volume of traffic, queue lengths (nano-modelling), sources of the traffic
- Cyclists/runners/aged care living exposure to air quality (respiratory illness or allergies)
- Users adopt city property (e.g. and help out the council to look after the assets
- Smart dynamic lights and video surveillance for environmental and safety monitoring
- Sharing economy: e.g. activity-based workspace design and productivity, bike shares
- Crowd-powered real-time public transports and on the road tracking (e.g. train is too full)

Top 3 Transformational Trends enabled by IoT

- 1. The Rise of Personalized, Autonomous, and Crowd-sourced Business and Services
- 2. The prominence of Big Data analysis, visualization, and machine learning for making sense of the interconnected things in the world
- 3. A Stronger Sense of Community to Face Future Challenges

Goal: Data-Driven Personalised Health

- Ongoing recording to understand the person's lifestyle
 - Diagnose, Prevent, Manage
- Recommend solutions based on the individual's profile, contexts & evidence
 - QoL-state, rules
- Monitor and evaluate the person's actions
 - Exercise, healthy diet, social

Image from Herox.com

Science and Engineering Faculty

What can the Cloud do with Data?

Science and Engineering Faculty

a university for the **real** world

What can the Patients do with Data?

- Patients with chronic disease have **greater demand** to obtain basic information regarding their health status and difficult in finding consultation time with practitioners (Triantafyllidis, Koutkias, Chouvarda, & Maglaveras, 2013)
- Patients become frustrated with detailing their interactions with clinicians, tracking unaddressed health issues, maintaining a running list of questions and concerns (Pratt et al., 2006)
- Patients may have **difficulties to recall** their condition and situation when consulting with their health practitioners (Patel, Klasnja, Hartzler, Unruh, & Pratt, 2012)
- Patients' lack of knowledge about what they should track and how to track (Patel, Klasnja, Hartzler, Unruh, & Pratt, 2012)
- Patients can become overwhelmed by available information (Pratt et al., 2006)

Personal Health Management

"Putting the person in the centre of their own health and our healthcare system"

Access

- Timely, relatable & actionable health info
- Multi-channel communications
- ✓ Choice

Partnerships

✓ Participatory medicine
✓ Trust and respect
✓ Public-private

- ✓ Empowerment /self efficacy
- Care giver networks (family, friends)
- ✓ Community & volunteerism

MoH Singapore Personal Health Management Strategy 2011

Science and Engineering Faculty

Overview

- 1. Pervasive Analytical Framework for sensing health and wellness
 - Interdisciplinary challenges of data-driven multimedia computing for quantifying wellness states
- 2. Integrated System for personalized and collaborative wellness promotion program
 - Emphasizes on individual's perceived control, planned behaviour, self-efficacy, and social (peer) supports.
 - Professional health service platform that actually work for each individual.

Science and Engineering Faculty

Pervasive Analytical Framework

Science and Engineering Faculty

CRICOS No. 00213J

a university for the **real** world

Science and Engineering Faculty

QUT

a university for the **real** world

Sensors Aggregation: Wellness Index Quantification

A. Kailas, C.-C. Chong, and F. Watanabe, "From Mobile Phones to Personal Wellness Dashboards," *IEEE Pulse*, vol. 1, no. 1, pp. 57–63, Jul. 2010.

Science and Engineering Faculty

a university for the **real** world

QUI

WHO QoL: 4-domain factor model

Skevington, S. M., Lotfy, M., & O'Connell, K. A. (2004). The World Health Organization's WHOQOL-BREF quality of life assessment: psychometric properties and results of the international field trial. A report from the WHOQOL group. Quality of Life Research, 13(2), 299–310.

Science and Engineering Faculty

Quantification of Physical Activity

Chowdhury, Tjondronegoro, Chandran, Trost

Are you doing physical activities in an effective way?

- 1 Are you doing physical activities in right intensity?
- 2 Are you be able to expend desired amount of energy when performing physical activities?
- 3 Do you know which intensity or activities can increase your mood?

RESEARCH PROBLEMS

- Gold standards are expensive, lab based and not real-time!
- □ Inexpensive methods (wearable) are mostly inaccurate, still requires interpretation to complex raw data!
- Need for methods to estimate energy expenditure during physical activity reliably!

Framework

Science and Engineering Faculty

Science and Engineering Faculty

a university for the **real** world

Quantification of Mood

Rastgoo, Nakisa, Chakraborty, Tjondronegoro, Chandran, Zhang

Reference	Emotions				
(Paul Ekman and Oster 1979)	fear, sadness, happiness, anger, disgust, and surprise	Ho	w can we quantify		
(Arnold 1960)	Anger, Aversion, courage, dejection, desire, despair, fear, hate, hope, love, sadness	mo	od reliably and		
(Panksepp 1982)	Expectancy, rage, fear, panic	noi	n-invasively?		
(S. Tomkins 1963; S. S. Tomkins	surprise, interest, joy, rage, fear, disgust, shame, and anguish.				
1962)			Which theory of emotion can		
(Johnson-Laird and Oatley 1989)	happiness, sadness, fear, anger, and disgust	1	Which theory of emotion can be used to map with the		
(Frijda 1986)	Desire, happiness, interest, surprise, wonder, sorrow		signals?		
(Gray 1985)	Rage and Terror, anxiety, joy				
(Izard 1977)	Anger, Contempt, disgust, distress, fear, guilt, interest, joy,		How to extract useful		
	shame, surprise	2	features from multimodal		
(James 1884)	Fear, grief, love, rage		emotion signals?		
(McDougall 2003)	Anger, Disgust, elation, Fear		Which features are most reliable and how to fuse		
(Oatley and Johnson-Laird 1987)	Anger, disgust, anxiety, happiness, sadness	3	them?		
(Weiner and Graham 1984)	Sadness , happiness				
(Mowrer 1960)	Pain, pleasure		· · · · · · · · · · · · · · · · · · ·		
(Watson and others 1925)	Fear, love, rage	Sciend	ce and Engineering Faculty		

Recognising Emotion: Explicit Cues

- Facial expression (e.g. Ekman and Friesen (1978), Nikolaou et.al (2011))
- Body gesture (e.g. Coulson (2004), Van Den Stock, et.al. (2007))
- Speech (e.g.Healey (2000))

Science and Engineering Faculty

Facial Expression Recognition

Science and Engineering Faculty

State of the Art Results

		Database	Source		Emotion			Subj		Data size	
		Database						ect			
	1.5	luggage lost [9]	airport	humor,	sadness, anger, stress a	and indiffe	erences	109	2	09 video	
		Belfast [10]	TV		activation and eval	uation		125	2	98 video	
	1-	Yeasin et al. [3]	TV		six basic emotio	ons		N/A	1	08 video	
		VAM [11]	TV	Va	alence, activation and	dominance	e	104	1421 vid	eo/1,872 im	ages
	0.5	HUMAINE [1]	TV	emotion w	ords, intensity, activat	ion and va	lence etc.	48	4	48 video	
	Arousal	SFEW [5]	TV		six basic emotions an	d neutral		N/A	70	0 images	
	0-	AFEW [4]	TV		six basic emotions an	d neutral		330		126 video	
	-0.5	HAPPEI [6]	Flickr		Happiness (six sta	iges)		N/A		00 images	
		GENKI [7]	Web		smile			N/A	,	00 images	
	-1	Gv [8]	Web		six basic emotions an	d neutral		328	35	50 images	
	-	QUT (this work)) TV/web	six basic e	emotions, neutral, po	sitive and	negative	219	458 vide	eo/2,927 im	ages
Ref.	Featu	ire Reg.	Temp Num	Accuracy	Database	Ref.	Featu	re	Reg.	Num	Accuracy
Our	SIFT+	FAP	7	63.0 71.2		Our	SIFT+F	AP	X	~ 7	26.1
	macro moti	on block		71.3 61.7	- SFEW (SPI)	[5]	LPQ+PI	IOG	12000	8 7	19
[38]	global n	00/8		_42.5 _ •	80000000	[44]	HO	° Cola	80° × 80	7	28
[]	human per	COLOR OF	7	1.0 °		Our	SIFT (F	AP	S & X	/ 2	90.2
	rawin			64.6	· · · · · · · · · · · · · · · · · · ·		Box Fil	ters	1-/		91.6
[39]	LB	P T	× 6	70.3	GENKI-4K	[7]	Gabor Er	1	T	$\frac{2}{2}$	96.3
	Gấb			68.2	· · · ground tru		-0.5			4	
[39]	AAI		rediction result 5	70.3	o prediction		HOC	j	ground predict	tion result	92.3
[41]	dista	nce -1 -0.5 _ 0	0 3 1.5	82.0	-1 -0.5 0 0.5 Valence	1 1.5	-1.5	1 -0.5	0 0.5 Valence	5 1 1.5	5

Science and Engineering Faculty

Recognising Emotion: Implicit Cues

- Electroencephalography (EEG signal)
- Galvanic Skin Response
- Electrocardiogram (ECG signals)

Science and Engineering Faculty

Brain Map

Science and Engineering Faculty

Equipment and software

- EPOC headset
 - In this study we use the EPOC headset to collect the EEG signals focus on finding the correlation between different emotions through EEG signal.
 EEG signals were acquired from all available 14 electrodes of Emotive EPOC neuroheadset; AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1, O2.
 - MATLAB and EEGLab
 - Weka

Science and Engineering Faculty

Data Acquisition: EEG signal

The neurons of the brain produces together a rhythmic signal

Delta band <= 3Hz. Mainly seen in deep sleep

Theta band 4-7Hz. Observed with drowsiness or meditation.

Alpha band 'basic rhythm' 8-12Hz. Seen when people are awake, and is known to be more apparent when eyes are opened.

Beta band 13-30Hz. Apparent with active thinking or concentration.

DENOISED EEG SIGNAL - Time Range: <25, 35> s

Science and Engineering Faculty

Design and Evaluate Integrated System

Science and Engineering Faculty

QUT

a university for the **real** world

Patient-driven Healthcare Model

Swan, M. (2009). Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. International Journal of Environmental Research and Public Health, 6(2), 492–525. Retrieved from www.summon.com

QUT

E-health Initiative for Women's Wellness after Cancer Program

D. Anderson, A. McCarthy, P., Yates, M. Turner, N.King, L., Monterosso, M. Krishnasamy, K. White, S. Hall, D.Tjondronegoro. The Womens Wellness after Cancer Program. **NHMRC Partnership** \$1,186,000

NHMRC Partnership

STER	1: CHANGING LIFESTYLE		
3.1	Week 1 / Day1: Getting started	7	
1.2	Week 1 / Day 2: Water	9	
1.3	Week 1 / Day 3: Exercise	-11	
1.4	Week 1 / Day 4: Healthy eating	16	
1.5	Week 1 / Day 5: Healthy shopping and meal planning	22	
1.6	Week 1 / Day 6: Get enough calcium	20	
1.7	Week 1 / Day 7: Phytoestrogens and health	31	
1.1	Wineix 2 / Day 1: Perivit floor exercises	37	
- 		1004	

Interactive iBook

- self-learning
- self-motivation
- self-monitoring
- self-reflection

Collaborative Website

- community
- consultation
- communication

- Education •
- Social network + peer • support
- **Progress monitoring** ٠
- Virtual consultations •
- Sensor-enabled data • collection and analysis

Conclusions: Research Scope

- Investigate models and framework to quantify wellness states
 - Intelligent sensor networks
- **Develop** tools, algorithms, and systems to extract, select, and integrate features to classify/detect the wellness states
 - Machine-learning, signal processing, data mining (PR)
- **Assess** and refine the system via a comprehensive field study results to evaluate the user experience
 - Clinical trial, RCT

Conclusions: The Overall Picture

The Nexus of Innovation

Science and Engineering Faculty

QUT BlueSky Forum

www.blueskyforum.com

Science and Engineering Faculty

a university for the **real** world

QUT Mobile App Showcase

140+ students (up from 20 in 2010) **Industry**: Microsoft, Apple, Telstra, Suncorp, Woolworths, LifeTec, Virginblue

Science and Engineering Faculty

a university for the **real** world

THANK YOU

- Email: <u>dian@qut.edu.au</u>
- Twitter/LinkedIn: dianwt
- Publications:
 - <u>http://eprints.qut.edu.au/view/per</u> <u>son/Tjondronegoro,_Dian.html</u>
- Websites:
 - <u>www.milab.com.au</u>
 - <u>www.blueskyforum.com</u>

Disclaimer: Slides are contributed by MILAB team based on published and unpublished work, cited references and from the international collaborators (used with permission)

Science and Engineering Faculty

